

Architectural Options for 'Gigabit' and beyond...

Dutch Guild David Whitehead

Video Trends Impact the Cable Industry

- Real-Time Entertainment is responsible for over 70% of downstream bytes during peak period
- North America will be the first region to surpass the 80% of downstream traffic streaming threshold, which should occur by the end of 2020
- Key drivers
 - Continued expansion of streaming audio and video adoption
 - Increased adoption of emerging video technologies such as 4K, High-dynamicrange (HDR) video, and virtual reality

Source: Sandvine, 2016 Global Internet Phenomena, Latin America & North America

Traditional Deployment Challenges continue...

Traditional CMTS/HFC equipment does not sustainably address growing demands in bandwidth or services

Data and video continues to grow exponentially

Driving unsustainable power, space and cooling demands

Historical Cable Access Architectures

- Centralised 'Big Iron' CMTS/EdgeQAM Hardware
 - Hardware Upgrade Cycles to add Capacity/Density/Functionality
 - Chassis typically stays, all else changes
- Analog Fibre Optical Distribution Network
- Cost of Capacity expansions becoming prohibitive
 - Increased Capacity requires additional Hardware
 - Significant Infrastructure Investment required
 - Traditional Fibre Node Splits are costly and take time
 - More CCAP Infrastructure to provide additional Capacity

The Promise of Virtualization

harmonic

- Virtualization separates software from hardware
 - Quickness and agility to increase business efficiencies and productivity
 - Scalability
 - Elastic deployment
 - Sustainable capacity management

Enable change at a pace which exceeds demand in the most effective manner

Traditional CMTS/HFC vs. vCMTS

©2017 Harmonic Inc. All rights reserved worldwide.

vCMTS Enablers

Full spectrum DOCSIS 3.1	Remote PHY Node (hardware) has a long lifespan		
	CMTS Core (software) increases performance and functionality over time		
CableLabs Remote PHY Standard	Separating the PHY from the CMTS Core		
	Standards-based approach		
Commercial- Off-The-Shelf (COTS) Intel x86 Servers	Today's performance is great		
	Consistent, regular performance increases		

CMTS Stack

harmonic

What is virtualized in a vCMTS?

	Tunnels & Routing	Aggregation & Routing		Routing & IP Topology	Routing Configuration	
	IP to MAC	L3 Forwarding		IPv4, IPv6 & L2VPN Forwarding	L2VPN Configuration	
vCMTS	MAC to CM & Multicast Table	Multicast & Duplication	Multicast & Bridging Duplication		Sub Topology	DHCP Relay
SFID QoS Parameter SFID to Bonding Group		GSF Classification	SF Classification	Policing & SAV	DOCSIS Palizing & Oos	
		L2 QoS		US Classification	bocsis i oneniga dos	
		DS Bonding		US Bonding	Bonding	DOCSIS Management
	Header, BPI+	DS MAC		US MAC	DOCSIS MAC	
Physical Layer		Modulation		Demodulation	DOCSIS PHY	

vCMTS for Centralized and Distributed Architectures

Distributed Deployment
Centralized Deployment

harmonic

Virtualization Building Blocks

harmonic

Terminology

- Containerization: "applications can be broken up into manageable, functional components, packaged individually with all of their dependencies, and deployed on irregular architecture easily."
- Docker: a set of tools to package and deploy containers, which can specify container constraints and access permissions. Additionally, Docker sets up and deploys the container in Linux.
- Cloud native: "cloud native computing uses ... software ... to be containerized, dynamically orchestrated, and microservices oriented."
- Kubernetes: "an open-source system for automating deployment, scaling, and management of containerized applications."
- Microservice: "refers to an architectural approach that independent teams use to prioritize the continuous delivery of single-purpose services. The microservices model is the opposite of traditional monolithic software which consists of tightly integrated modules that ship infrequently and have to scale as a single unit."

Containers and Docker

- Packages code and dependencies together
- Multiple containers can run on the same machine
- Share the OS kernel with other containers
- Docker is a set of tools to package and deploy containers, which can specify container constraints and access permissions

Source: https://www.docker.com/what-container

©2017 Harmonic Inc. All rights reserved worldwide.

Virtual Machines

- Abstraction of physical hardware turning one server into many servers.
- Each VM includes a full copy of an operating system
- Hypervisor allows multiple VMs to run on a single machine.
- 'Bare metal' options also possible

Kubernetes

 A Kubernetes cluster consists of two types of resources

Kubernetes automates the distribution and

scheduling of application containers across a

The Master coordinates the cluster

cluster in a more efficient way

- Nodes are the workers that run applications
- A Kubernetes cluster can scale to dozens of servers handling thousands of service groups perfect for handling new RPD-based deployments. Elastic scalability allows sizing of cluster based on each deployment's needs

Source: https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-intro/

Bare Metal Architectures

Bare metal scale up

All software (bare metal or virtualized)

Bandwidth and subs scales with:

Intel CPU (cores, GHz), NIC (10G, 40G, 100G)

Load balanced architectures for Redundancy

Optimized for performance and price

Failure domain = single unit or multi serving group domain

Containerized Architecture with SG per Workload

harmonic

Scale out (horizontal scaling)

All software (containerized)

Bandwidth, subs scales with additional containers on same or additional servers

Easier to develop/test smaller units (nodes)

Test out SW Upgrades before mass deployment

Smaller failure domain

Full redundancy

Lends itself to on demand infrastructure deployment on a per SG basis

Comparing Hardware-Based and Virtualization Approaches

Old Way	New Way			
Application runs on custom hardware	Application runs on COTS hardware			
Application is implemented partially or fully on hardware components (e.g. ASIC, FPGA)	Application is implemented in software			
Replaced every three to five years	Long lifespan RF Hardware			
Application is upgraded infrequently	Application is upgraded regularly			
Equipment location is limited	Equipment location is varied			
Services turned on are labor intensive	Services are turned on automatically with orchestration			
Service monitoring is labor intensive	Service monitoring (telemetry) is performed by software analytics			
Service events are limited to local hardware storage	Service events are stored in the cloud			

Migration to vCMTS

harmonic

- vCMTS may co-exist with existing hardware-based systems
 - Deliver immediate power and space savings
 - Capacity headroom for many years to come
- vCMTS architectures support legacy services
 - MPEG video delivery (Video Core)
 - Out-of-band (OOB) signaling systems for MPEG video delivery (OOB Core)
- vCMTS feeds all data, voice and video services over IP, as legacy services diminish

Sustainably grow capacity

Adapt quickly to customer demands

Dynamically augment and shift resources to the most in-demand applications

What is next – Full Duplex DOCSIS

- Upstream Throughput currently limited by available Spectrum
- Need to expand spectrum available for Upstream Traffic

- Different downstream and upstream spectrum, transmit simultaneously
- Example: DOCSIS 3.1

Full Duplex DOCSIS - considerations

- New RPD Hardware absolutely Required
- CCAP Core MAY be SW upgradeable
- FDD is a Node+0 Technology
 - No Active devices after the node
 - Requires Fibre pushed deeper, or 10 Gbps pushed deeper into Network
- More complex Silicon for RPD potentially higher Power, larger device

Summary

- Capacity Growth continues to be required
- Virtualization enables manageable expansion of Infrastructure with continual requirement for more RF Capacity
- Virtualization options can offer increased deployment flexibility
- Full Duplex DOCSIS offers future potential for Symmetrical 10 Gigabit services, but with additional Architectural considerations.

Thank You