Arista Networks

Designing Media Networks

Gerard Phillips – SE Media & Entertainment gp@arista.com

Designing Media Networks

- The move to IP
- Synchronisation
- A brief history of standards
- Media Network Architectures
- SDN / Flow orchestration
- Network Visibility / Programmability
- Wrapping up

The move to IP

Why make the move to IP?

- SDI, tried and tested, understood
- Single duplex, single composite flow / BNC
- IP, full duplex, multiple flows / fiber
- Leverage COTS:-
 - New merchant silicon every 12 months
 - Faster than Moores law right now!
 - Reliability / product quality drive by cloud / HFT
- Piggy back off the Cloud Titans 400Gbe shipping now…

Why make the move to IP?

- Now, its cheaper @ scale > 576² (Lawo estimate)
- Enables the scale you'd need at UHD
- Massive space and power savings for OB applications
- Flexibility IP is just the plumbing
- Converged / multi-tenancy / anybody anywhere
- IP end-to-end glass to glass live production, playout, contribution, distribution, repurposing, editing, OTT....
- enables new / innovative workflows, production techniques, etc

Why make the move to IP?

- Becomes cheaper as more native IP end points / processing elements become available – SNP / Neuron / MV's / Playout servers....
- IP.... It is tried and tested & understood!
- Reliability 24/7/365 operation is an expectation
- No performance limits Line-rate, non-blocking, fast accurate switching, PTP
- Anything else?
 - Reduce operating costs
 - Easily spin up new services / clients
 - An on ramp to virtualised workflows
 - Flex into the cloud

ARISTA

A brief history of standards...

A brief history...

- Audio has been IP for ages Dante, Ravenna, Livewire
 - AES67 describes the bits that are common...
 - ST2110-30 isalmost AES67
- The VSF's work lead to the ST2022 standards (CBR/VBR/HBR + FEC + "-7")
 - Very often used for contribution / hand-off
 - 2022-6 encapsulates the whole SDI stream
 - Guarantees lip-sync, and metadata delivery
 - Can be used (amongst other things) to tunnel TICO over SDI over IP!
 - No UHD variant yet so you're stuck with quad HD / 2SI for uncompressed
- SMPTE's ST2059 provides a PTP profile for high bandwidth media
- The VSF creates TR-03 & TR-04
- SMPTE adopts and re-writes into ST2110
- All underwritten by the AIMS roadmap and within the JT-NM framework

SMPTE ST 2022-6 Multiplexed flows

SMPTE ST 2022-6 & AES 67 Multiplexed flows

SMPTE ST 2110 Essence flows

ST2110 == Flexibility

- Separate flows for individual essences
- No blanking sent
- Decoupled from underlying SDI formats
- Implicit synchronisation (ST2059)
- 4:1:1 -> 4:4:4
- 8->16 bits colour depth
- Format flexibility to 32k²
- Extensible
 - Compressed video / audio
 - Native IP metadata (script / GPS co-ords)

- ST2110-10, System Timing
- ST2110-20, Uncompressed video
- ST2110-21, Traffic shaping (-20)
- ST2110-22, Compressed
- ST2110-30, PCM Audio
- ST2110-31, AES3 Transparent Transport
- ST2110-40, ANC Data

SDI Live production

IP Live production

- Looks much the same as now!
- Efficient essence workflows
- Hybrid systems possible
 - SDI sea with IP islands
 - IP sea with SDI islands
- Naturally enables S/W nodes
 - On-ramp to virtualised studio

Synchronisation

Before PTP

- Broadcast systems require synchronization (a shared time-base)
 - Minimizes latency
 - Prerequisite for accurate on air cuts / effects
 - Essential for multi-channel audio formats
 - Raises quality (frame drops, audio glitches)
 - Enables lower cost kit (no frame stores)

BB / Tri-syncs / Word clock / DARS provide this synchronisation

And in the ST2110 age? We still need to....

- Provide frequency and phase synchronization between all components in a system
 - Allows all clocks to be locked together
- Provides media element identification
 - Video frames
 - Audio samples
 - Metadata packets

- Take complex essence like SDI/Audio/Captions and tag these elements as we split them. So that we can then re-combine later
- Tag disparate sampled elements like camera / microphone and combine

PTP to the rescue

- IEEE 1588 / PTPv2
- Precision Time Protocol
- Widely used
 - Industrial Automation
 - Financial trading
 - Power generation / distribution
 - Mobile backhaul synchronization
 - Basis of White Rabbit used at CERN
 - AVB / Dante / Ravenna
- Typically locked to GPS
- High accuracy possible (10's ns)
- **SMPTE ST2059** defines the epoch as midnight, 1st Jan 1970
- SMPTE ST2059 defines how video frames and audio samples map to this
- SMPTE ST2059 provides a "profile" that aims to allow +/-500ns to be achieved

IEEE1588 / PTPv2 for Broadcast

- SMPTE ST2059
 - Specifies an epoch
 - Specifies target accuracy
 - Specifies how video and audio are related to the epoch
- ST2110 (20 / 30 / 40 etc), AES67, ST2022-6(TR-04)
 - RTP derived from PTP
 - Enables elements to be tied back together
 - Provides frequency, phase and wall clock time
 - AES67 and SMPTE2059 have different setting ranges in their "profiles"
- AES67 / ST2110 overlap (AES-R16-2016)
 - Fortunately, there is common ground you can use one profile to rule then both!

How does PTP work?

- Announce messages sent by the master
 - Received by all slaves (and potential masters)
 - Typically 1 per second
 - Used in the BMCA process
- Syncs sent periodically by the master
 - Received by all slaves
 - Typically 8 per second
 - Not dissimilar to NTP!
- Delay requests sent by slaves
 - Typically 8 per second
- Delay Response back from master
- Hardware timestamping is essential
- Reliable delivery + simple maths + complex filtering = accurate slave time!

Maximising PTP performance across a network

- Use GPS to lock GM's if practical
- In a hybrid system PTP and BB coexist
- Rich network PTP functionality provides;
 - Boundary and Transparent clock capability
 - SMPTE ST 2059 + AES67 profile support
 - Scalability 1000's of endpoints
 - Architectural simplification

PTP clock types

- Ordinary Clock
 - Grand Master Typically GPS locked
 - Slave Only
 - Slave or master
- Boundary Clock
 - Eliminates switch delay (== jitter)
 - Switch acts as both Slave and Master
 - Run host ports at the rate you need
- Transparent Clock
 - Eliminates switch delay (== jitter)
 - Messages forwarded through switch
 - Slaves use correction field to improve accuracy

ARISTA

PTP and the LAN

Studio 1 -> 6

Remote facility

- LAN connectivity provides low jitter
- PTP services *can be* shared
- Consider resilience levels

LAN

Consider resource flexibility

Media Network Architectures

Seamless protection switching (-7)

Media Network Architectures, Single big switch

- Choose the right switch, and this is line-rate non-blocking and multicast non-blocking
- Very simple to envisage and provision, IGMP works fine
- Very scalable 32x100Gbe -> 576x100Gbe -> X4 @ 400Gbe!
- 896* 896 @ 3Gbe -> 16K square @ 3Gbe
- > 2k hosts @ 25Gbe

Hub and spoke

- >16k hosts @ 25Gbe, 1:10 provisioning
- 400Gbe around the corner....
- Scale at the rate you want to
- Just like traditional broadcast Tie-lines ©
- Non-blocking no longer makes sense
 - Does that fit your workflow?
- Flow orchestration (SDN) should be considered

Leaf and Spine

- A great architecture for future thinking converged network
- ...think Virtual Network Functionality
- ST2110, Storage, Compute, Transcode....

But....

- Now, flow orchestration is essential
 - Protects ST2110 / ST2022 / AES67
 - Enforces workflow security
 - Contributes to Multi-tenancy operation

Purple / hybrid approach

- Red / Blue spines Simplifies SDN controller
- Red / Blue or Purple leafs
- -7 Diversity guaranteed by Red / Blue spine
- -7 enables relatively simple upgrades, maintenance
- -7 handles failure gracefully
- Single homed devices accommodated

Pure Purple approach

- Spines and leafs are purple
- -7 Diversity provided logically by SDN controller
- -7 flows can be maintained in case of spine failure (but not complete physical diversity)
- Trade-off's can be made in failure case how to use remaining spine B/W
- SDN controller needs to take proactive action for upgrades, maintenance, failure
- Single homed devices accommodated

Expansion...

.... if you want to start with a single switch (pair -7) and grow

- Start with a leaf
- Either add a sp(l)ine...
- Or promote the leaf pair to "spline"

- Start with IGMP or SDN
- Your decision your network

SDN / Flow orchestration

Who needs SDN? Who doesn't?

- Large, distributed, multi switch oversubscribed media networks
 - More source bandwidth than any switch to switch interface can transport
 - Cannot use existing protocols and configurations to define network forwarding
 - Implementing a BC that can talk to multi-vendor API's (network and endpoint)

> This is KEY for 2110 deployments!!!

- Non-blocking network designs
 - Enough bandwidth for required flows to be distributed over available links with no risk of oversubscription (may be single link or statically defined multi-link)
 - Examples: audio breakouts, lower bitrate file/compressed, defined I/O paths
- Single switch, non-blocking deployments
 - Bandwidth control not required
 - IGMP for subscribers works fine in single
 - Chassis scale to 500+ 100G ports or 2000+ 25G ports

SDN / Flow orchestration

- Flow orchestration (SDN) should be considered:
 - For multi-switch topology
 - For multi-link connectivity
- Non-blocking no longer makes sense
- Just like traditional broadcast Tie-lines ©
- Don't forget security and scheduling its all resource management!

NOS Choice: The Key for SDN and more....

- SDN is founded on fast, secure, flexible API's
- State based NOS'...
 - Simplify extensibility
 - Lead naturally to state based streaming telemetry
 - Facilitate many API options the right tool...
- Open standard API's and tool bring...
 - Re-use, efficiency, higher up-time
 - Reduce vendor lock-in
 - Drive down Opex

State Driven Replication and Streaming

Network Visibility / Programmability

Monitored Data -> Information -> Knowledge -> Control

- The OSI model is 7 layer SDI is 3?
- Good telemetry bridges this gap and some...
- Rich (open) API's enable 3rd parties to build Application specific tools, to leverage network health and status

- Rich (open) API's provide choice and flexibility
- Flexibility enables Business
 Agility

Programmability example – Lawo smartDASH

- Arista's eAPI exposes a rich network data set...
- … transformed through the smartDASH Broadcast lens

CloudVision Telemetry App

Complete, real-time NetDB state streaming

- CloudVision Telemetry Apps provide frontend for visibility network state
- Workstream Analytics Viewer
 - 1st CloudVision Telemetry App
 - Correlation of network-wide data
 - · Views: Event, Device, Metric, and more
 - Timeline view for better historic troubleshooting
- More apps to follow:
 - Other CV-based apps
 - APIs for customer & partner apps

Multicast monitor – Real-time flow monitoring

É Chrome File Edit V	iew History Bookmarks Peop	ole Window Help	(J 🚳 🛛	🗴 🕀 🕴 🥅 🎅 🔽 100% 🖪	2) 🚺 W	ed 23 May 12:05	Gerard Phillips Q	. :E
🔴 🔍 🌑 🧖 Re: Multicast Monit	or screen sl × 🗛 Arista Networks - N	(Mapp ×						Gerard
← → C ▲ Not Secure https://10.81.111.61/mmapp/multicast ☆ ■ □ ⑤ ○ □ • ⑤ □ • ⑥ □ : iii Apps □ Gerard ① OneLogin F Fonality HUDWeb □ Arista □ Dock10 CVP demo								
III ARISTA Search						0 Warning	• O Critical •	٠
A → multicast							Successfully logg	ed in.×
Source & Group	Name	Ingress	Egress	Monitored Interface Count	Action			
10.123.1.11, 239.1.1.1 »	Studio 1 - UHD Camera 1	eosplus-7050q-1.rtp.aristanetworks.com Ethernet1/1 : 0.08 Mbps		8		Update Fl © Stop Moni	low Info toring Flow	
10.123.1.11, 239.1.1.2 »	Studio 1 - UHD Camera 2	eosplus-7050q-1.rtp.aristanetworks.com Ethernet1/1:0.24 Mbps	-	8		Update Flow Info © Stop Monitoring Flow		
10.123.1.11, 239.1.1.3 »		eosplus-7050q-1.rtp.aristanetworks.com Ethernet1/1 : 29.827 pps	-	8		Update Flow Info © Stop Monitoring Flow		
10.123.1.11, 239.1.14 »	Studio 1 - UHD Camera 7	eosplus-7050q-1.rtp.aristanetworks.com Ethernet1/1 : 0.48 Mbps	-	8		Update Flow Info		

Programmability example – Skyline/Dataminer

- Arista's eAPI exposes a rich network data set...
- ... transformed to Broadcast Knowledge

Incoming Flows

Source

2. Select a group

after

EVS 1 EVS 2 EVS 3 EVS 4 EVS 4 EVS 5 EVS 6 EVS 6

Wrapping it up

Live Production needs that to be addressed in IP

- Multicast
 - One to many
 - Non-blocking, Deterministic
 - Traditional Multicast IGMPv3 / IGMPv2 / PIM-SSM
 - \gg Hardened in the HFT market
 - » IGMPv3 on-air performance proven with many customers TimelineTV / NEP Wimbedon / rtl/BCE
 - \gg Proven at huge scale with NEP Australia, and others
- SDN / Orchestration
- Scale 10's of thousands of multicast groups for ST2110
 - » Camera grading fast, reliable
 - » Workflow changes reliable @ scale
 - » Simultaneous routing changes quick, reliable
- High availability / Reliability
- Visibility + Programmability

Moving to IP....

- Be clear about your objectives what does IP bring to your installation?
- Its not for every project, but hybrid SDI / IP works well
- Don't think of this as SDI over IP its live production / playout over IP
- Xfunctional teams broadcast guys and IT guys

So.....

- Leverage subject experts Broadcast vendor / SI / network vendor
- Your Broadcast Controller its what will unlock value in your IP infrastructure.
- Don't leave the monitoring of IP as an after-thought

But don't be put off – its real!

SKY

UNITED BROADCAST FACILITIES

Thank you!

